Microbiome of Supraglacial Systems on the Aldegonda and Bertel Glaciers (Western Spitsbergen Island)
Reviews
Readers community rating
0.0 (0 votes)


Views
11


Downloads
0
Date of publication
10.09.2024
Public year
2024
ISSN
0032-180X
Microbiome of Supraglacial Systems on the Aldegonda and Bertel Glaciers (Western Spitsbergen Island)
Annotation

Microbial biomass, diversity of cultivated bacteria and micromycetes, as well as the number of functional nitrogen cycle genes in the supraglacial systems of the Aldegonde and Bertel glaciers were studied. Biomass of microorganisms varied from 2.54 to 722 µg/g of substrate. It has been shown for the first time that the majority (78.7–99.8%) of the microbial biomass of supraglacial objects is represented by fungi rather than prokaryotes. Main part (from 70 to 90%) of the fungal biomass was mycelium, the length of which varied from 6.70 to 537.51 m/g of substrate. The number of prokaryotes varied from 2.4 × 108 to 1.95 × 109 cells/g of substrate. The length of actinomycete mycelium varied from 2.6 to 62.61 m/g of substrate. The abundance of cultivated bacteria and actinomycetes varied from 3.3 × 104 to 1.2 × 106 CFU/g of substrate, and that of micromycetes varied from 2.2 × 101 to 1.7 × 104 CFU/g of substrate. Bacteria of the genera Arthrobacter, Bacillus, Rhodococcus, and Streptomyces, as well as micromycetes of the genera Antarctomyces, Cadophora, Hyphozyma, Teberdinia and Thelebolus dominated. Micromycetes Antarctomyces psychrotrophicus, Hyphozyma variabilis and Teberdinia hygrophila were found in Svalbard for the first time. The number of amoA genes in ammonium-oxidizing bacteria varied from 5.33×106 to 4.86 × 109; nitrogen fixation genes nifH, from 9.89 × 107 to 9.81 × 1010; nirK denitrification genes, from 4.82 × 107 to 3.34 × 1010 gene copies/g of substrate. The results obtained indirectly indicate the leading role of fungi in the microbiome of the supraglacial objects of Svalbard and the significant contribution of prokaryotes to the emission of greenhouse gases from them.

About authors
D. A. Nikitin
Affiliation: Dokuchaev Soil Science Institute
Affiliation: Institute of Geography, Russian Academy of Sciences
Address: Moscow, Russia; Moscow, Russia
L. V. Lysak
Affiliation: Lomonosov Moscow State University
Address: Moscow, Russia
E. P. Zazovskaya
Affiliation: Institute of Geography, Russian Academy of Sciences
Affiliation: Center for Applied Isotope Studies, University of Georgia
Address: Moscow, Russia; Athens, USA
N. S. Mergelov
Affiliation: Institute of Geography, Russian Academy of Sciences
Address: Moscow, Russia
S. V. Goryachkin
Affiliation: Institute of Geography, Russian Academy of Sciences
Address: Moscow, Russia
References

Belkina O.A., Mavlyudov B.R. Mkhi na lednikakh Shpitsbergena. // Botanicheskij zhurnal. 2011. № 96(5). S. 582–596.Bubnova E.N., Nikitin D.A. Griby v donnykh gruntakh Barentseva i Karskogo morej // Biologiya morya. 2017. № 43(5). S. 366–371.Vlasov D.Yu., Kirtsideli I.Yu., Abakumov E.V., Novozhilov Yu.K., Zelenskaya M.S., Barantsevich E.P. Antropogennaya invaziya mikromitsetov v nenarushennye ehkosistemy oazisa Kholmy Larsemann (Vostochnaya Antarktida) // Rossijskij zhurnal biologicheskikh invazij. 2020. № 13(2). S. 23–34.Glazovskaya M.A. Eholovye melkozemistye nakopleniya na lednikakh khrebta Terskej Ala-Tau // Tr. In-ta geografii AN SSSR. 1952. Vyp. 49. S. 55–69.Glazovskaya M.A. Eholovye otlozheniya na lednikakh Tyan'-Shanya // Priroda. 1954. № 2. S. 90–92.Glushakova A.M., Kachalkin A.V., Chernov I.Yu. Osobennosti dinamiki ehpifitnykh i pochvennykh drozhzhevykh soobschestv v zaroslyakh nedotrogi zhelezkonosnoj na peregnojno-gleevoj pochve // Pochvovedenie. 2011. № 8. S. 966–972.Zazovskaya Eh.P., Mergelov N.S., Shishkov V.A., Dolgikh A.V., Dobryanskij A.S., Lebedeva M.P., Turchinskaya S.M., Goryachkin S.V. Kriokonity kak faktory razvitiya pochv v usloviyakh bystrogo otstupaniya lednika Al'degonda, Zapadnyj Shpitsbergen // Pochvovedenie. 2022. № 3. S. 281–295.https://doi.org/10.31857/S0032...Zvyagintsev D.G. Metody pochvennoj mikrobiologii i biokhimii. M.: Izd-vo Mosk. un-ta, 1991. S. 60.Kirtsideli I.Yu. Mikromitsety iz pochv i gruntov Severo-vostochnoj Zemli (arkhipelag Shpitsbergen) // Mikologiya i fitopatologiya. 2010. № 44(2). S. 116–125.Kirtsideli I.Yu. Mikroskopicheskie griby v pochvakh i gruntakh arkticheskikh gornykh sistem // Biosfera. 2016. № 8(1). S. 63–78.Kirtsideli I.Yu. Mikroskopicheskie griby v pochvakh ostrova Khejsa (Zemlya Frantsa-Iosifa) // Novosti sistematiki nizshikh rastenij. 2015. № 49. S. 151–160.Kirtsideli I.Yu., Vlasov D.Yu., Zelenskaya M.S., Il'yushin V.A., Novozhilov Yu.K., Churkina I.V., Barantsevich E.P. Otsenka antropogennoj invazii mikroskopicheskikh gribov v arkticheskie ehkosistemy (arkhipelag Shpitsbergen) // Gigiena i sanitariya. 2020. № 99(2). S. 145–151.Kornejkova M.V., Red'kina V.V., Myazin V.A., Fokina N.V., Shalygina R.R. Mikroorganizmy pochv poluostrova Rybachij // Tr. Kol'skogo nauchnogo tsentra RAN. 2019. № 10. S. 108–122.https://doi.org/10.25702/KSC.2...Kochkina G.A., Ivanushkina N.E., Karasev S.G., Gavrish E.Yu., Gurina L.I., Evtushenko L.I., Spirina E.V., Vorob'eva E.A., Gilichinskij D.A., Ozerskaya S.M. Mikromitsety i aktinobakterii v usloviyakh mnogoletnej estestvennoj kriokonservatsii // Mikrobiologiya. 2001. T. 70. № 3. S. ­412–420.Lysak L.V., Maksimova I.A., Nikitin D.A., Ivanova A.E., Kudinova A.G., Soina V.S., Marfenina O.E. Mikrobnye soobschestva pochv rossijskikh polyarnykh stantsij Vostochnoj Antarktidy // Vestnik Mosk. un-ta. Ser. 16, biologiya. 2018. № 3. S. ­132–140.Lysak L.V., Skvortsova I.N., Dobrovol'skaya T.G. Metody otsenki bakterial'nogo raznoobraziya pochv i identifikatsii pochvennykh bakterij. 2003. M.: Maks-press, 120 s.Marfenina O.E., Nikitin D.A., Ivanova A.E. Struktura gribnoj biomassy i raznoobrazie kul'tiviruemykh mikromitsetov v pochvakh Antarktidy (stantsii Progress i Russkaya) // Pochvovedenie. 2016. № 8. S. 991–999.https://doi.org/10.7868/S00321...Mergelov N.S., Goryachkin S.V., Zazovskaya Eh.P., Karelin D.V., Nikitin D.A., Kutuzov S.S. Supraglyatsial'nye pochvy i pochvopodobnye tela: raznoobrazie, genezis, funktsionirovanie (obzor) // Pochvovedenie. 2023. № 12. S. 1522–1539.https://doi.org/10.31857/S0032...Migunova V.D., Kurakov A.V. Struktura mikrobnoj biomassy i troficheskie gruppy nematod v dernovo-podzolistykh pochvakh postagrogennoj suktsessii v yuzhnoj tajge (Tverskaya oblast') // Pochvovedenie. 2014. № 5. S. 584–584.https://doi.org/10.7868/S00321...Nikitin D.A., Lysak L.V., Badmadashiev D.V. Molekulyarno-biologicheskaya kharakteristika pochvennogo mikrobioma severnoj chasti arkhipelaga Novaya Zemlya // Pochvovedenie. 2022. № 8. S. 1035–1045.Nikitin D.A., Lysak L.V., Badmadashiev D.V., Kholod S.S., Mergelov N.S., Dolgikh A.V., Goryachkin S.V. Biologicheskaya aktivnost' pochv v usloviyakh pokrovnogo oledeneniya v severnoj chasti arkhipelaga Novaya Zemlya // Pochvovedenie. 2021. № 10. S. 1207–1230.https://doi.org/10.31857/S0032...Nikitin D.A., Lysak L.V., Kutovaya O.V., Gracheva T.A. Ehkologo-troficheskaya struktura i taksonomicheskaya kharakteristika soobschestv mikroorganizmov pochv severnoj chasti arkhipelaga Novaya Zemlya // Pochvovedenie. 2021. №. 11. S. 1346–1362.https://doi.org/10.31857/S0032...Nikitin D.A., Lysak L.V., Mergelov N.S., Dolgikh A.V., Zazovskaya Eh.P., Goryachkin S.V. Mikrobnaya biomassa, zapasy ugleroda i ehmissiya SO2 v pochvakh Zemli Frantsa-Iosifa: vysokoarkticheskie tundry ili polyarnye pustyni? // Pochvovedenie. 2020. № 4. S. 1–19.https://doi.org/10.31857/S0032...Nikitin D.A., Marfenina O.E., Kudinova A.G., Lysak L.V., Mergelov N.S., Dolgikh A.V., Lupachev A.V. Mikrobnaya biomassa i biologicheskaya aktivnost' pochv i pochvopodobnykh tel beregovykh oazisov Antarktidy // Pochvovedenie. 2017. № 9. S. 1122–1133.https://doi.org/10.7868/S00321...Nikitin D.A., Marfenina O.E., Maksimova I.A. Ispol'zovanie suktsessionnogo podkhoda pri izuchenii vidovogo sostava mikroskopicheskikh gribov i soderzhaniya gribnoj biomassy v antarkticheskikh pochvakh // Mikologiya i fitopatologiya. 2017. № 51(4). S. 211–219.Nikitin D.A., Semenov M.V., Semikolennykh A.A., Maksimova I.A., Kachalkin A.V., Ivanova A.E. Biomassa gribov i vidovoe raznoobrazie kul'tiviruemoj mikobioty pochv i substratov o. Nortbruk (Zemlya Frantsa-Iosifa) // Mikologiya i fitopatologiya. 2019. T. 53. № 4. S. 210–222. https://doi.org/10.1134/S00263...Polyanskaya L.M., Zvyagintsev D.G. Soderzhanie i struktura mikrobnoj biomassy kak pokazateli ehkologicheskogo sostoyaniya pochv // Pochvovedenie. 2005. № 6. S. 706–714.Semenov V.M. Funktsii ugleroda v mineralizatsionno-immobilizatsionnom oborote azota v pochve // Agrokhimiya. 2020. № 6. S. 78–96.https://doi.org/10.31857/S0002...Khabibullina F.M., Kuznetsova E.G., Vaseneva I.Z. Mikromitsety podzolistykh i bolotno-podzolistykh pochv v podzone srednej tajgi na severo-vostoke evropejskoj chasti Rossii // Pochvovedenie. 2014. № 10. S. 1228–1228.https://doi.org/10.7868/S00321...Khoult Dzh., Kriga N., Snita P., Stejli Dzh., Uil­l'yamsa S. Opredelitel' bakterij Berdzhi (v 2 tomakh) // Per. s ang. pod red. Zavarzina G.A. M.: Mir, 1997. 800 s.Chernov I.Yu. Shirotno-zonal'nye i prostranstvenno-suktsessionnye trendy v raspredelenii drozhzhevykh gribov // Zhurnal obschej biologii. 2005. № 66(2). S. 123–135.Aalto J., Scherrer D., Lenoir J., Guisan A., Luoto M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems // Environ. Res. Lett. 2018. V. 13(7). P. 074003.https://doi.org/10.1088/1748-9...Abakumov E., Nizamutdinov T., Polyakov V. Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method // Biol. Comm. 2021. V. 66(3). P. 198–209.https://doi.org/10.21638/spbu0...Adhikari K., Hartemink A.E. Linking soils to ecosystem services—A global review // Geoderma. 2016. V. 262. P. 101–111.https://doi.org/10.1016/j.geod...Anesio A.M., Laybourn-Parry J. Glaciers and ice sheets as a biome // TREE. 2012. V. 27(4). P. 219–225.https://doi.org/10.1016/j.tree...Bekku Y.S., Nakatsubo T., Kume A., Koizumi H. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard // Arct. Antarct. Alp. Res. 2004. V. 36(4). P. 395–399.https://doi.org/10.1657/1523-0...Braker G., Fesefeldt A., Witzel K.P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteriain environmental samples // Appl. Environ. Microbiol. 1998. V. 64. P. 3769–3775.Bubnova E.N. Fungal diversity in bottom sediments of the Kara Sea // Botanica marina. 2010. V. 53(6). P. 595–600.https://doi.org/10.1515/BOT.20...Buzzini P., Turchetti B., Yurkov A. Extremophilic yeasts: the toughest yeasts around? // Yeast. 2018. V. 35(8). P. 487–497.https://doi.org/10.1002/yea.33...Cameron K., Hodson A.J., Osborn M. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities // Polar Biology. 2012. V. 35. P. 1375–1393.https://doi.org/10.1007/s00300...Chapin F.S., Matson P.A., Vitousek P.M. Nutrient cycling // Principles of Terrestrial Ecosystem Ecology. 2011. P. 259–296.https://doi.org/10.1007/978-1-...De Hoog G.S., Gottlich E., Platas G., Genilloud O., Leotta G., Van Brummelen J. Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica // Studies in Mycology. 2004. V. 51. P. 33.Dix N.J., Webster J. Fungal ecology. Springer Science & Business Media, 2012. P. 376.Domsch K.H., Gams W., Anderson T. Compendium of soil fungi. Eching: IHW-Verlag, 2007.Edwards A., Anesio A.M., Rassner S.M., Sattler B., Hubbard B., Perkins W.T., Youn M., Gareth W.G. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard // ISME J. 2011. V. 51(1). P. 150–160.https://doi.org/10.1038/ismej....Edwards A., Douglas B., Anesio A., Rassner S.M., Irvine-Fynn T.D., Sattler B., Griffith G.W. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard // Fungal Ecology. 2013. V. 6. P. 168–176.https://doi.org/10.1016/j.fune...Flimban S., Oh S.E., Joo J.H., Hussein K.A. Characterization and identification of cellulose-degrading bacteria isolated from a microbial fuel cell reactor // Biotechnology and Bioprocess Engineering. 2019. V. 24(4). P. 622–631.https://doi.org/10.1007/s12257...Freitag T.E., Chang L., Prosser J.I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient // Environ. Microbiol. 2006. V. 8(4). P. 684–696.Hassan N., Rafiq M., Hayat M., Shah A.A., Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review // Rev. Environ. Sci. 2016. V. 15. P. 147–172.https://doi.org/10.1007/s11157...Hoham R.W., Remias D. Snow and glacial algae: a review // J. Phycol. 2020. V. 56(2). P. 264–282.https://doi.org/10.1111/jpy.12...Hutchins D.A., Jansson J.K., Remais J.V., Rich V.I., Singh B.K., Trivedi P. Climate change microbiology—problems and perspectives // Nat. Rev. Microbiol. 2019. V. 17(6). P. 391–396.https://doi.org/10.1038/s41579...Imhoff J.F. New dimensions in microbial ecology—functional genes in studies to unravel the biodiversity and role of functional microbial groups in the environment // Microorganisms. 2016. V. 4(2). P. 19.https://doi.org/10.3390/microo...Joergensen R.G., Emmerling C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils // JPNSS. 2006. V. 169(3). P. 295–309.https://doi.org/10.1002/jpln.2...Jones C.M., Hallin S. Ecological and evolutionary factors under lying global and local assembly of denitrifier communities. ISMEJ. Nature Publishing Group. 2010. V. 4. P. 633–641. PMID: 2009078549.https://doi.org/10.1038/ismej....Joshi S., Bajpai A., Johri B.N. Extremophilic fungi at the interface of climate change // Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology. P. 1–22. Academic Press.https://doi.org/10.1016/B978-0...Kaczmarek L., Jakubowska N., Sofia C.G. et al. The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and protista): a review // Polar Record. 2015. V. 52(2). P. 176–203.https://doi.org/10.1017/S0032247415000637.Kochkina G.A., Ivanushkina N.E., Lupachev A.V., Starodumova I.P., Vasilenko O.V., Ozerskaya S.M. Diversity of mycelial fungi in natural and human-affected Antarctic soils // Polar Biol. 2019. V. 42(1). P. 47–64.https://doi.org/10.1007/s00300...Kochkina G.A., Ozerskaya S.M., Ivanushkina N.E., Chigineva N.I., Vasilenko O.V., Spirina E.V., Gilichinskii D.A. Fungal diversity in the Antarctic active layer // J. Microbiol. 2014. V. 83(1). P. 94–101.https://doi.org/10.1134/S00262...Kotas P., Šantrůčková H., Elster J., Kaštovská E. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard) // Biogeosciences. 2018. V. 15(6). P. 1879.https://doi.org/10.5194/bg-15-...Kudinova A.G., Petrova M.A., Dolgikh A.V., Soina V.S., Lysak L.V., Maslova O.A. Taxonomic Diversity of Bacteria and Their Filterable Forms in the Soils of Eastern Antarctica (Larsemann Hills and Bunger Hills) // J. Microbiol. 2020. V. 89(5). P. 574–584.https://doi.org/10.1134/S00262...Kumar S., Suyal D.C., Yadav A., Shouche Y., Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude // PloS One. 2019. V. 14(3). P. e0213844.https://doi.org/10.1371/journa...Lang C., Fettweis X., Erpicum M. Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming // The Cryosphere. 2015. V. 9(1). P. 83–101.https://doi.org/10.5194/tc-9-8...Li Y., Dick W.A., Tuovinen O.H. Fluorescence microscopy for visualization of soil microorganisms—a review // Biol. Fertil. Soils. 2004. V. 39(5). P. 301–311.https://doi.org/10.1007/s00374...Ma W., Jiang S., Assemien F., Qin M., Ma B., Xie Z. Response of microbial functional groups in volved in soil N cycle to P and N fertilizationin Tibetanal pine meadows // Soil Biol. Biochem. 2016. V. 101. P. 195–206.https://doi.org/10.1016/j.soil...Malcheva B., Nustorova M., Zhiyanski M., Sokolovska M., Yaneva R., Abakumov E. Diversity and activity of microorganisms in Antarctic polar soils // One Ecosystem. 2020. V. 5. P. e51816.https://doi.org/10.3897/oneeco...Martínez-Espinosa R.M. Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments // Int. J. Mol. Sci. 2020. V. 21(12). P. 4228.https://doi.org/10.3390/ijms21...Musilova M., Tranter M., Bamber J.L., Takeuchi N., Anesio A.M. Experimental evidence that microbial activity lowers the albedo of glaciers // Geochem. Perspect. Lett. 2016. V. 2. P. 106–116.https://doi.org/10.7185/geoche...Nakatsubo T., Yoshitake S., Uchida M., Uchida M., Shibata Y., Koizumi H. Organic carbon and microbial biomass in a raised beach deposit under terrestrial vegetation in the High Arctic, Ny-Ålesund, Svalbard // Polar Res. 2008. V. 27(1). P. 23–27.https://doi.org/10.1111/j.1751...Nizamutdinov T., Mavlyudov B., Polyakov V., Abakumov E. Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: main chemical and physicochemical properties // Acta Geochimica. 2023. V. 42(2). P. 346–359.https://doi.org/10.1007/s11631...Pittino F., Maglio M., Gandolfi I., Azzoni R.S., Diolaiuti G., Ambrosini R., Franzetti A. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability // Ann. Glaciol. 2018. V. 59(77). P. 1–9.https://doi.org/10.1017/aog.20...Polyakov V., Zazovskaya E., Abakumov E. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen // Pol. Polar Res. 2019. V. 40(2). P. 105–120.https://doi.org/10.24425/ppr.2...Polyanskaya L.M., Yumakov D.D., Tyugay Z.N., Stepanov A.L. Fungi and Bacteria in the Dark-Humus Forest Soil // Eurasian Soil Sci. 2020. V. 53(9). P. 1255–1259.https://doi.org/10.1134/S10642...Prosser J.I., Nicol G.W. Prosser J.I., Nicol G.W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation // Trends in Microbiol. 2012. V. 20. P. 523–531. PMID: 22959489.https://doi.org/10.1016/j.tim....Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M.C., Koops H.P., Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys // Appl. Environ. Microbiol. 2000. V. 66(12). P. 5368.https://doi.org/10.1128/aem.66...Ravolainen V., Soininen E.M., Jónsdóttir I.S., Eischeid I., Forchhammer M., van der Wal R., Pedersen Å.Ø. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research // Ambio. 2020. V. 49(3). P. 666–677.https://doi.org/10.1007/s13280...Regan K., Stempfhuber B., Schloter M., Rasche F., Prati D., Philippot L., Boeddinghaus R.S., Kandeler E., Marhan S. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil // Soil Biol. Biochem. 2017. V. 109. P. 214–226.https://doi.org/10.1016/j.soilbio.2016.11.01145.Rozwalak P., Podkowa P., Buda J., Niedzielski P., Kawecki S., Ambrosini R., Azzoni R.S. et al. Cryoconite–From minerals and organic matter to bioengineered sediments on glacier’s surfaces // Sci. Total Environ. 2022. V. 807. P. 150874.https://doi.org/10.1016/j.scit...Salcher M.M. Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology // Aquat. Microb. Ecol. 2016. V. 77(3). P. 183–196.https://doi.org/10.3354/ame017...Schuler T.V., Kohler J., Elagina N., Hagen J.O.M., Hodson A.J., Jania J.A., et al. Reconciling Svalbard glacier mass balance // Front. Earth Sci. 2020. V. 9. P. 156.https://doi.org/10.3389/feart....Segawa T., Takeuchi N., Mori H., Rathnayake R.M., Li Z., Akiyoshi A., Satoh H., Ishii S. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers // FEMS microbiology ecol. 2020. V. 96(11). P. fiaa199.https://doi.org/10.1093/femsec...Seifert K.A., Gams W. The genera of Hyphomycetes–2011 update // Persoonia: Mol. Phylogeny Evol. of Fungi. 2011. V. 27(1). P. 119–129.https://doi.org/10.3767/003158...Singh P., Singh S.M. Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic // Polar Biol. 2012. V. 35. P. 575–583.https://doi.org/10.1007/s00300...Singh P., Singh S.M., Singh R.N., Naik S., Roy U., Srivastava A., Bölter M. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic // J. basic microbiol. 2017. V. 57(12). P. 1018–1036.https://doi.org/10.1002/jobm.2...Sogonov M.V., Schroers H.J., Gams W., Dijksterhuis J., Summerbell R. C. The hyphomycete Teberdinia hygrophila gen. nov., sp. nov. and related anamorphs of Pseudeurotium species // Mycologia. 2005. V. 97(3). P. 695–709.https://doi.org/10.1080/155725...Stibal M., Sabacka M., Kastova K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae // Microb. Ecol. 2006. V. 52(4). P. 644–654.https://doi.org/10.1007/s00248...Takeuchi N. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite // Ann. Glaciol. 2002. V. 34. P. 409–414.Taş N., Prestat E., Wang S., Wu Y., Ulrich C., Kneafsey T., et al. Landscape topography structures the soil microbiome in arctic polygonal tundra // Nat Commun. 2018. V. 9. P. 777. PMID: 29472560.https://doi.org/10.1038/s41467...Tourna M., Stieglmeier M., Spang A., Könneke M., Schintlmeister A., Urich T., Engel M., Schloter M., Wagner M., Richter A., Schleper C. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil // Proc. Natl. Acad. Sci. USA. 2011. V. 108(20). P. 8420–8425.https://doi.org/10.1073/pnas.1...Wang M., Jiang X., Wu W., Hao Y., Su Y., Cai L., Xiang M., Liu X. Psychrophilic fungi from the world’s roof. Persoonia // Mol. Phylogenet. Evol. Fungi. 2015. V. 34. P. 100–112.https://doi.org/10.3767/003158...Wang M., Tian J., Xiang M., Liu X. Living strategy of cold-adapted fungi with the reference to several representative species // Mycology. 2017. V. 8(3). P. ­178–188.https://doi.org/10.1080/215012...Wong M.L., Medrano J.F. Real-time PCR for mRNA quantitation // Biotechniques. 2005. V. 39(1). P. ­75–85.https://doi.org/10.2144/05391R...Wouters B., Gardner A.S., Moholdt G. Global glacier mass loss during the GRACE satellite mission ­(2002–2016) // Front. Earth Sci. 2019. V. 7. P. 96.https://doi.org/10.3389/feart....Yang Y., Zhao J., Jiang Y., Hu Y., Zhang M., Zeng Z. Response of bacteria harboring nir Sand nir Kgenesto different N fertilization rates in an alkaline northern Chinese soil // Eur. J. Soil Biol. 2017. V. 82. P. 1–9.https://doi.org/10.1016/j.ejso... tundraPLOYoshitake S., Uchida M., Koizumi H., Nakatsubo T. Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard // Polar Res. 2007. V. 26(1). P. 22–30.https://doi.org/10.1111/j.1751...Yurkov A. Temporal and geographic patterns in yeast distribution / Yeasts in Natural Ecosystems: Ecology. 2017. P. 101–130.https://doi.org/10.1007/978-3-...Zdanowski M.K., Bogdanowicz A., Gawor J., Gromadka R., Wolicka D., Grzesiak J. Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome // Microb. Ecol. 2017. V. 73(3). P. ­532–538.https://doi.org/10.1007/s00248...Zhang T., Wang N.F., Liu H.Y., Zhang Y.Q., Yu L.Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic) // Front. Microbiol. 2016. V. 7. P. 227.https://doi.org/10.3389/fmicb....Zhelezova A., Chernov T., Tkhakakhova A., Xenofontova N., Semenov M., Kutovaya O. Prokaryotic community shifts during soil formation on sands in the tundra zone // PloS one. 2019. V. 14(4). P. e0206777.https://doi.org/10.1371/journa...

Полная версия доступна только подписчикам
Подпишитесь прямо сейчас