Chronic and Periodic Effects of Smoke from Crop Residue Combustion on Soil Enzymatic Activity
Reviews
Readers community rating
0.0 (0 votes)


Views
14


Downloads
0
Date of publication
10.09.2024
Public year
2024
ISSN
0032-180X
Chronic and Periodic Effects of Smoke from Crop Residue Combustion on Soil Enzymatic Activity
Annotation

Wildfires lead to the emission of large volumes of toxic smoke, which is transported hundreds of kilometres away from the fires and can have a negative impact on soil, biota and humans. A series of modelling experiments on pyrogenic fumigation of soil were carried out to assess the effects of gaseous products from wildfires on soil biochemical parameters. The effects of chronic exposure to gaseous substances and periodic, repetitive effects of smoke exposure on soil were determined. The results were compared with a single intensive smoke exposure. It was found that pyrogenic impact significantly affected the change of enzymatic activity of ordinary chernozem. The degree of influence depended on the duration and periodicity of smoke exposure. In all experiments enzymes of oxidoreductase class (catalase, peroxidase, polyphenol oxidase) were more sensitive to fumigation than invertase from hydrolase class. The reason of suppression of enzymatic activity of soils is high concentrations of toxic gases. The following concentrations exceeded the maximum permissible concentrations for atmospheric air: CO 714 times, phenol (hydroxybenzene) 441 times, acetaldehyde 24100 times, formaldehyde 190 times. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil after fumigation was revealed, the total content of PAHs was 377 ng/g. The highest values were recorded for naphthalene, where the concentration was 4.4 times higher than the maximum permissible and phenanthrene 2.8 times higher than the maximum permissible. It was found that 60-minute intensive smoke affects the soil to a lesser extent than chronic and periodic. Indicators of enzymatic activity of chernozem after such fumigation decreased by 15-33% depending on the enzyme, in chronic and periodic by 41-84 and 31-78%, respectively. The obtained data indicate a significant effect of smoke on enzymatic activity of soils under chronic and periodic exposure to gaseous products of combustion.

About authors
M. S. Nizhelskiy
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
K. Sh. Kazeev
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
V. V. Vilkova
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
A. N.  Fedorenko
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
S. N. Sushkova
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
S. I. Kolesnikov
Affiliation: Southern Federal University
Address: Rostov-on-Don, Russia
References

Aseeva R.M., Serkov B.B., Sivenkov A.B. Gorenie i pozharnaya opasnost' drevesiny // Pozharovzryvobezopasnost' veschestv i materialov. 2012. № 21. S. 19–32.Berdnikova L.N. Vliyanie opasnykh i vrednykh faktorov lesnykh pozharov na okruzhayuschuyu sredu // Bezopasnost' i ehkologiya transportno-tekhnologicheskikh sredstv. Krasnoyarsk, 2019. S. 47–55.Bioindikatsiya zagryaznenij nazemnykh ehkosistem / Pod red. Shuberta R. M.: Mir, 1988. 348 s.Burlakova L.M., Morkovkin G.G., Anan'eva Yu.S., Zavalishin S.I., Kamenskij V.A. Vliyanie lesnykh pozharov na svojstva podzolistykh pochv (na primere Khanty-Mansijskogo avtonomnogo okruga) // Lesnoj vestnik. 2002. № 2. S. 66–71.Vokina V.A., Novikov M.A., Alekseenko A.N., Sosedova L.M., Kapustina E.A., Bogomolova E.S., Elfimova T.A. Ehksperimental'naya otsenka vliyaniya dyma lesnykh pozharov na reproduktivnuyu funktsiyu melkikh mlekopitayuschikh i ikh potomstvo // Izvestiya Irkutskogo gos. un-ta. Ser. Biologiya. Ehkologiya. 2019. T. 29. S. 88–98. https://doi.org/10.26516/2073–...Dadenko E.V., Denisova T.V, Kazeev K.Sh., Kolesnikov S.I. Otsenka primenimosti pokazatelej fermentativnoj aktivnosti v biodiagnostike i monitoringe pochv // Povolzhskij ehkologicheskij zhurnal. 2013. № 4. S. 385–393.Kazeev K.Sh., Kolesnikov S.I., Akimenko Yu.V., Dadenko E.V. Metody diagnostiki nazemnykh ehkosistem. Rostov-na-Donu: Izd-vo YuFU, 2016. 356 s.Novosyolova E.I., Volkova O.O. Vliyanie tyazhyolykh metallov na aktivnost' katalazy raznykh tipov pochv // Izvestiya Orenburgskogo gos. agrarnogo un-ta. 2017. № 2. S. 190–193.Borisenko S.N., Sushkova S.N. Pat. RU № 125490. Reaktor dlya provedeniya reaktsij v srede subkriticheskoj vody. 2012. Byul. № 6. C. 11.Volkotrub L.P., Baushev A.V. Pat. RU № 2018110. Sposob izvlecheniya politsiklicheskikh aromaticheskikh uglevodorodov iz tverdykh prob. 1994. Byul. № 17. C. 5.Kolesnikov S.I., Sushkova S.N., Minkina T.M., Mandzhieva S.S. Pat. RU № 2485109. Sposob izvlecheniya 3,4-benz(a)pirena iz pochv, donnykh otlozhenij i osadkov stochnykh vod. 2013. C. 13.Povolotskaya Yu.S. Obschee predstavlenie o pochvennykh fermentakh // Mezhdunarodnyj zhurnal gumanitarnykh i estestvennykh nauk. 2020. № 1. S. 21–23. https://doi.org/10.24411/2500-...Prikhod'ko V.D., Kazeev K.Sh., Vilkova V.V., Nizhel'skij M.S., Kolesnikov S.I. Izmenenie aktivnosti fermentov v postpirogennykh pochvakh (fizicheskij model'nyj ehksperiment) // Pochvovedenie. 2023. № 1. S. 118–128. https://doi.org/10.31857/S0032...Semutnikova E.G., Gorchakov G.I., Sitnov S.A., Kopejkin V.M., Karpov A.V., Gorchakova I.A., Ponomareva T.Ya., Isakov A.A., Guschin R.A., Dotsenko O.I., Kurbatov G.A., Kuznetsov G.A. Sibirskaya dymnaya mgla nad evropejskoj territoriej Rossii v iyule 2016 g. Zagryaznenie atmosfery i radiatsionnye ehffekty // Optika atmosfery i okeana. 2017. T. 31. № 11. S. 962–970. https://doi.org/10.15372/AOO20...Sin'kov O.A., Pochapskij A.A. Vliyanie lesnykh pozharov na okruzhayuschuyu sredu // Aktual'nye problemy geotekhniki, ehkologii i zaschity naseleniya v chrezvychajnykh situatsiyakh. Minsk: BNTU, 2017. S. 101–103.Sushkova S.N. Zakonomernosti akkumulyatsii, migratsii i biodegradatsii politsiklicheskikh aromaticheskikh uglevodorodov v pochvakh prirodnykh i antropogennykh ehkosistem. Dis. … dokt. biol. nauk. Rostov-na-Donu, 2022. 288 s.Fufaeva T.V., Kazakova N.A. Otsenka vliyaniya razlichnykh doz formal'degida i fenola na mikroorganizmy chernozema vyschelochennogo // Austrian J. Technical Natural Sci. 2014. № 5. S. 22–27.Khaziev F.Kh. Sistemno-ehkologicheskij analiz fermentativnoj aktivnosti pochv. M.: Nauka, 1982. 204 s.Cheverdin Yu.I., Ryabtsev A.N., Titova T.V., Bespalov V.A., Cheverdin A.Yu., Saprykin S.V. Nauchnoe obosnovanie i vzaimosvyaz' agrofizicheskikh parametrov s ehffektivnym plodorodiem pochvy // Sostoyanie pochv Tsentral'nogo Chernozem'ya Rossii i problemy vosproizvodstva ikh plodorodiya. Voronezh: Istoki, 2015. S. 56–61.Alkio M., Tabuchi T.M., Wang X., Colon-Carmona A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response–like symptoms // J. Experimental Botany. 2005. V. 56(421). P. 2983–2994. https://doi.org/10.1093/jxb/er...Andreoni V., Gianfreda L. Bioremediation and monitoring of aromatic–polluted habitats // Appl. Microbiol Biotechnol. 2007. V. 76(2). P. 287–308. https://doi.org/10.1007/s00253...Artaxo P., Martins J.V., Yamasoe M.A., Procópio A.S., Pauliquevis T.M., Andreae M.O., Guyon P., Gatti L.V., Cordova A.M. Leal Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia // J. Geophysical Res. 2002. V. 107. P. 8081. https://doi.org/10.1029/2001JD...Bandowe B.A.M., Shukurov N., Leimer S., Kersten M., Steinberger Y., Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment // Environ Geochem Health. 2021. V. 43. P. 4847–4861. https://doi.org/10.1007/s10653...Bondur V.G., Voronova O.S., Gordo K.A., Zima A.L. Satellite Monitoring of the Variability of Wildfire Areas and Emissions of Harmful Gas Components into the Atmosphere for Various Regions of Russia over a 20-Year Period // Doklady Earth Sci. 2021. V. 500(2). P. 890–894. https://doi.org/10.1134/S10283...Borowik A.J., Wyszkowska M., Wyszkowski. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel // Environ. Sci. Pollut. Res. 2017. V. 24(31). P. 24346–24363. https://doi.org/10.1007/s11356...Burns R.G. Enzyme activity in soil: location and a possible role in microbial ecology // Soil Biol. Biochem. 1982. V. 14. P. 423–427. https://doi.org/10.1016/0038-0...Cascio W.E. Wildland fire smoke and human health // Sci. Total Environ. 2018. V. 624. P. 586–595. https://doi.org/10.1016/j.scit...Canadian Environmental Quality Guidelines Winnipeg: Canadian Council of Ministers of the Environment, 2020.Chen T., Liu X., Zhang X., Chen X., Tao K., Hu X. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co–contaminated soils // Chemosphere. 2016. V. 154. P. 515–520. https://doi.org/10.1016/j.chem...Chuang M.T., Fu J.S., Lin N.H., Lee C.T., Gao Y., Wang S.H., Sheu G.R., et al. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment // Atmos. Environ. 2015. V. 112. P. 294–305. https://doi.org/10.1016/j.atmo...Collins L., Bradstock R.A., Clarke H., Clarke M.F., Nolan R.H., Penman T.D. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire // Environ. Res. Let. 2021. V. 16(4). P. 044029. https://doi.org/10.1088/1748-9...Cotrufo M.F, Soong J.L., Horton A.J., Campbell E.E., Haddix M.L., Wall D.H., Parton W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss // Nature Geosci. 2015. V. 8. P. 776–779. https://doi.org/10.1038/NGEO25...de Oliveira-Junior J.F., Mendes D., Correia Filho W.L.F., da Silva Junior C.A., de Gois G., da Rosa Ferraz Jardim A.M., et al. Fire foci in South America: Impact and causes, fire hazard and future scenarios // J. South Am. Earth Sci. 2021. V. 112. https://doi.org/10.1016/j.jsam...Doamba S.W.M.F., Savadogo P., Nacro H.B. Effects of burning on soil macrofauna in a savanna-woodland under different experimental fuel load treatments // Appl. Soil Ecol. 2014. Vol. 81. P. 37–44. https://doi.org/10.1016/j.apso...Dong X., Fu J.S. Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part I: model evaluation and analysis of systematic bias // Atmos. Environ. 2015. V. 116. P. 293–307. https://doi.org/10.1016/J.ATMO...Dong X., Fu J.S. Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part II: variability and different influences in lower and higher atmosphere levels // Atmos. Environ. 2015. V. 115. P. 9–18.Fu J.S., Hsu N.C., Gao Y., Huang K., Li C., Lin N.H., Tsay S.C. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling // Atmos. Chem. Physics. 2012. V. 12. P. 3837–3855. https://doi.org/10.5194/acp-12...Fuzzi S., Decesari S., Facchini M.C., Cavalli F., Emblico L., Mircea M., Andreae M.O., Trebs I., et al. Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season // J. Geophysical Res. 2007. V. 112. P. D01201. https://doi.org/10.1029/2005JD...Gonzalez-Vila F., Lopez J., Martin F., del Rio J. Determination in soils of PAH produced by combustion of biomass under different conditions // Fresenius J. Anal. Chem. 1991. V. 339. P. 750–753. https://doi.org/10.1007/BF0032...Henne P.D., Hawbaker T.J. An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA // Ecol. Model. 2023. V. 477. 110277. https://doi.org/10.1016/j.ecol...Hernández L. The Mediterranean Burns: WWF’s Mediterrenean Proposal for the Prevention of Rural Fires. WWF: Gland, Switzerland, 2019.Hua L., Shao G. The progress of operational forest fire monitoring with infrared remote sensing // J. Forest. Res. 2017. V. 28. P. 215–229. https://doi.org/10.1007/s11676...Huang K., Fu J.S., Hsu N.C., Gao Y., Dong X., Tsay S.C., Lam Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA // Atmos. Environ. 2013. V. 78. P. 291–302. https://doi.org/10.1016/j.atmo...Kazeev K.Sh., Odabashian M.Yu., Trushkov A.V., Kolesnikov S.I. Assessment of the Influence of Pyrogenic Factors on the Biological Properties of Chernozems // Eur. Soil Sci. 2020. V. 53(11). P. 1610–1619. https://doi.org/10.1134/S10642...Li J., Huang B., Wang Q., Li Y., Fang W., Yan D., Guo M., Cao A. Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling // Environ. Pollut. 2017 P. 534–542. https://doi.org/10.1016/j.envp...Li H., Huang W.X., Gao M.Y., Li X., Xiang L., Mo C.H., Li Y.W., Cai Q.Y., Wong M.H., Wu F.Y. AM fungi increase uptake of Cd and BDE–209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil // Ecotoxicol. Environ. Safety. 2020. V. 195. P. 110485. https://doi.org/10.1016/j.ecoe...Lin N.H., Tsay S.C., Maring H.B., Yen M.C., Sheu G.R., Wang S.H., Chi K.H., Chuang M.T., Ou-Yang C.F. et al. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: from BASE-ASIA and the Dongsha Experiment to 7-SEAS // Atmos. Environ. 2013. V. 78. P. 1–19.Lindenmayer D.B., Taylor C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies // Proc. National Academy. Sci. USA. 2020. V. 117(22). P. 12481–12485. https://doi.org/10.1073/pnas.2...Lipińska A., Kucharski J., Wyszkowska J. The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil // Polyc. Aromatic. Compounds. 2014. V. 34(1). P. 35–53. https://doi.org/10.1080/104066...Liu R., Xiao N., Wei S., Zhao L., An J. Rhizosphere effects of PAH–contaminated soil phytoremediation using a special plant named Fire Phoenix // Sci. Total Environ. 2014. V. 473. P. 350–358. https://doi.org/10.1016/j.scit...Liu Y., Goodrick S., Heilman W. Wildland fire emissions, carbon, and climate: Wild-fire-climate interactions // Forest Ecol. Manag. 2014. V. 317. P. 80–96. https://doi.org/10.1016/j.fore...Liu Q.Y., Wu Y.H., Zhou Y.Z., Li X.Y., Yang S.H., Chen Y.X., Qu Y.J., Jin M. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks // Environ. Pollut. 2021. V. 284. https://doi.org/10.1016/J.ENVP...Mao Y., Zhang L., Wang Y., Yang L., Yin Y., Su X., Liu Y., Pang H., Xu J., Hu Y., Shen X. Effects of polycyclic aromatic hydrocarbons (PAHs) from different sources on soil enzymes and microorganisms of Malus prunifolia var. Ringo // Arch. Agro. Soil Sci. 2020. P. 1–15.Masyagina O.V. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: Recent local estimations // Cur. Opin. Environ. Sci. Health. 2021. V. 23. P. 100283. https://doi.org/10.1016/j.coes...Milton L.A., White A.R. The potential impact of bushfire smoke on brain health // Neurochem. Int. 2020. V. 139. P. 104796. https://doi.org/10.1016/j.neui...Nakajima D., Nagame S., Kuramochi H., Sugita K., Kageyama S., Shiozaki T., Takemura T., Shiraishi F., Goto S. Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood // Bull. Environ. Contam. Toxicol. 2007. V. 79. P. 221–225. https://doi.org/10.1007/S00128...Nicola L., Turco E.R., Albanese D., Donati C., Thalheimer M., Pindo M., Insam H., Cavalieri D., Pertot I. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease // Appl. Soil Ecol. 2017. V. 113. P. 71-79. https://doi.org/10.1016/J.APSO...Nizhelskiy M.S., Kazeev K.Sh., Vilkova V.V., Kolesnikov S.I. Inhibition of enzymatic activity of ordinary chernozem by gaseous products of plant matter combustion // Eur. Soil Sci. 2022. V. 55. № 6. P. 802–809. https://doi.org/10.1134/S1064229322060096Pimonsree S., Vongruang P., Sumitsawan S. Modified biomass burning emission in modeling system with fire radiative power: Simulation of particulate matter in Mainland Southeast Asia during smog episode // Atmos. Poll. Res. 2018. V. 9(1). P. 133–145. https://doi.org/10.1016/j.apr....Polyak Y.M., Bakina L.G., Chugunova M.V., Mayachkina N.V., Gerasimov A.O., Bure V.M. Effect of remediation strategies on biological activity of oil–contaminated soil–A field study // Int. Biodeteriorat. Biodegradation. 2018. V. 126. P. 57–68. https://doi.org/10.1016/j.ibio...Radočaj D, Jurišić M, Gašparović M. A wildfire growth prediction and evaluation approach using Landsat and MODIS data // J. Environ. Manag. 2022. Vol. 304. 114351. https://doi.org/10.1016/j.jenv...Ren D., Fu R., Leslie L.M., Dickinson R.E. Modeling the mudslide aftermath of the 2007 Southern California Wildfires // Natural Hazards. 2011. V. 57(2). P. 327–343. https://doi.org/10.1007/s11069...Sharples J.J., Cary G.J., Fox-Hughes P., Mooney S., Evans J.P., Fletcher M.S., Fromm M., Grierson F., McRae R., Baker P. Natural hazards in Australia: extreme bushfire // Climatic Change. 2016. V. 139. P. 85–99. https://doi.org/10.1007/s10584...Sinsabaugh R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil // Soil Biology and Biochemistry. 2010. V. 42. R. 391–404. https://doi.org/10.1016/j.soil...Sjöströma J., Granström A. Human activity and demographics drive the fire regime in a highly developed European boreal region // Fire Saf. J. 2023. V. 136. P. 103743. https://doi.org/10.1016/j.fire...Sosedova L.M., Vokina V.A., Novikov M.A., Andreeva E.S., Alekseenko A.N., Zhurba O.M., Rukavishnikov V.S., Kudaeva I.V. Reproductive function of male rats and motor activity of their offspring in fire emissions modeling // Bull. Experiment. Biol. Med. 2022. V. 172(4). P. 472–477. https://doi.org/10.1007/s10517...Štursová M., Baldrian P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil–bound and free activity // Plant and soil. 2011. V. 338(1). P. 99–110. https://doi.org/10.1007/s11104...Sushkova S.N., Minkina T., Deryabkina (Turina) I., Mandzhieva S., Zamulina I., Bauer T., Vasilyeva G., Antonenko E., Rajput V. Influence of PAH contamination on soil ecological status // J. Soils Sediments. 2018. V. 18(6). P. 2368-2378. https://doi.org/10.1007/s11368...Swengel A.B. A literature review of insect responses to fire, compared to other conservation managements of open habitat // Biodiversity Conservation. 2001. V. 10. P. 1141–1169. https://doi.org/10.1023/A:1016...Tate R. Microbiology and Enzymology of Carbon and Nitrogen Cycling. 2002. https://doi.org/10.1201/978020...Toberman H., Evans C.D., Freeman C., Fenner N., White M., Emmett B.A., Artz R.R.E. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland // Soil Biol. Biochem. 2008. V. 40. P. 1519–1532. https://doi.org/10.1007/978-3-...Utobo E.B., Tewari L. Soil enzymes as bioindicators of soil ecosystem status // Appl. Ecol. Environ. Res. 2015. V. 13(1). P. 147–168. https://doi.org/10.15666/aehr/1...Wang X.T., Miao Y., Zhang Y., Li Y.C., Wu M.H., Yu G. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk // Sci. Total Environ. 2013. V. 447. P. 80–89. https://doi.org/10.1016/j.scit...Wang C., Luo Y., Tan H., Liu H., Xu F., Xu H. Responsiveness change of biochemistry and micro–ecology in alkaline soil under PAHs contamination with or without heavy metal interaction // Environ. Pollut. 2020. V. 266. P. 115296. https://doi.org/10.1016/j.envp...Wei J. Zhang X., Liu X., Liang X., Chen X. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene–diesel spiked soils // Sci. Total Environ. 2017. V. 599. P. 50–57. https://doi.org/10.1016/j.scit...Xu Y., Sun G.D., Jin J.H., Liu Y., Luo M., Zhong Z.P., Liu Z.P. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy // J. Hazard. Materials. 2014. V. 264. P. 430–438. https://doi.org/10.1016/j.jhaz...Zhang X., Liu X., Liu S., Liu F., Chen L., Xu G., Zhong C., Su P., Cao Z. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland // J. Hazard. Materials. 2011. V. 193. P. 45–51. https://doi.org/10.1016/j.jhaz...Zhang S.Y., Wang Q.F., Xie S.G. Molecular characterization of phenanthrene–degrading methanogenic communities in leachate–contaminated aquifer sediment // Internat. J. Environ. Sci. Technol. 2012. V. 9(4). P. 705–712. https://doi.org/10.1007/s13762...Zhang D., Ji X., Meng Z., Qi W., Qiao K. Effects of fumigation with 1,3-dichloropropene on soil enzyme activities and microbial communities in continuous-cropping soil // Ecotoxicol. Environ. Safety. 2019. V. 169. P. 730–736. https://doi.org/10.1016/j.ecoe...Zhu J., Cao A., Wu J., Fang W., Huang B., Yan D., Wang Q., Li Y. Effects of chloropicrin fumigation combined with biochar on soil bacterial and fungal communities and Fusarium oxysporum // Ecotoxicol. Environ. Safety. 2021. V. 220. https://doi.org/10.1016/j.ecoe...

Полная версия доступна только подписчикам
Подпишитесь прямо сейчас